Research areas in the Micromanipulation Group include:
Formulation of microcapsules using a wide variety of materials, such as alginate, melamine- formaldehyde, silica, PMMA or shellac.
Figure 1: X-ray tomography image of a freeze-dried calcium shellac particle.
From Xue and Zhang, (2008) J. Microencapsulation, 25:523.
Characterization of microspheres, either biological (eg. cells), inorganic or organic, using micromanipulation techniques
Figure 2: Micromanipulation rigs for the compression of cells and microcapsules
Figure 3: Photographs of a alginate microcapsule (84 µm) being compressed between a micromanipulation probe and a glass surface. (a) before compression; (b) during compression. From Wang et al. (2005) Chem. Eng. Sci., 60:6649.
Mathematical analysis of mechanical and chemical characterisation studies, such as analysis of the compression of a microcapsule or cell, using MATLAB or finite element methods
Figure 4: 3-D schematic of a compression experiment and its finite elements mesh.
From Nguyen et al. (2009) Chem. Eng. Sci., 64:821
Analysis of the adhesion and cohesion forces of soft materials, such as food foulants, using micromanipulation techniques
Figure 5: Sequence of tomato paste fouling sample pulling processes by the T-shaped probe.
Figure 6: Typical force vs. displacement curve for pulling a fouling sample.
From Liu et al. (2002) Food. Bioprod. Process., 80:286.