Wang, Y., Qiu, D., He, Y., Zhou, Q., & Strbac, G. (2023). Multi-agent reinforcement learning for electric vehicle decarbonized routing and scheduling. Energy, 284, 129335. https://doi.org/10.1016/j.energy.2023.129335
Min, H., Bin, S., Quan, Z., Wang, J., He, Y., & Xu, H. (2023). Recent Progress in Energy Management of Connected Hybrid Electric Vehicles Using Reinforcement Learning. International Journal of Automotive Manufacturing and Materials, 6–6. https://doi.org/10.53941/ijamm.2023.100018
Mattas, K., Albano, G., Donà, R., He, Y., & Ciuffo, B. (2023). On the Relationship between Traffic Hysteresis and String Stability of Vehicle Platoons. Transportation Research Part B: Methodological, 174, 102785. https://doi.org/10.1016/j.trb.2023.102785
He, Y., Zhou, Q., Wang, C., Li, J., Shuai, B., Lei, L., & Xu, H. (2023). Microscopic Modelling of Car-Following Behaviour: Developments and Future Directions. International Journal of Automotive Manufacturing and Materials, 6–6. https://doi.org/10.53941/ijamm.2023.100006
Lei, L., Du, L.-X., He, Y.-L., Yuan, J.-P., Wang, P., Ye, B.-L., Wang, C., & Hou, Z. (2023). Dictionary learning LASSO for feature selection with application to hepatocellular carcinoma grading using contrast enhanced magnetic resonance imaging. Frontiers in Oncology, 13. https://www.frontiersin.org/articles/10.3389/fonc.2023.1123493
Donà, R., Mattas, K., He, Y., Albano, G., & Ciuffo, B. (2022). Multianticipation for string stable Adaptive Cruise Control and increased motorway capacity without vehicle-to-vehicle communication. Transportation Research Part C: Emerging Technologies, 140, 103687. https://doi.org/10.1016/j.trc.2022.103687
He, Y., Montanino, M., Mattas, K., Punzo, V., & Ciuffo, B. (2022). Physics-augmented models to simulate commercial adaptive cruise control (ACC) systems. Transportation Research Part C: Emerging Technologies, 139, 103692. https://doi.org/10.1016/j.trc.2022.103692
He, Y., Mattas, K., Dona, R., Albano, G., & Ciuffo, B. (2022). Introducing the Effects of Road Geometry Into Microscopic Traffic Models for Automated Vehicles. IEEE Transactions on Intelligent Transportation Systems, 23(8), 13604–13613. https://doi.org/10.1109/TITS.2021.3126049
Li, J., Zhou, Q., He, Y., Williams, H., Xu, H., & Lu, G. (2022). Distributed Cooperative Energy Management System of Connected Hybrid Electric Vehicles With Personalized Non-Stationary Inference. IEEE Transactions on Transportation Electrification, 8(2), 2996–3007. https://doi.org/10.1109/TTE.2021.3127142
Ciuffo, B., Mattas, K., Makridis, M., Albano, G., Anesiadou, A., He, Y., Josvai, S., Komnos, D., Pataki, M., Vass, S., & Szalay, Z. (2021). Requiem on the positive effects of commercial adaptive cruise control on motorway traffic and recommendations for future automated driving systems. Transportation Research Part C: Emerging Technologies, 130, 103305. https://doi.org/10.1016/j.trc.2021.103305
He, Y., Makridis, M., Fontaras, G., Mattas, K., Xu, H., & Ciuffo, B. (2020). The energy impact of adaptive cruise control in real-world highway multiple-car-following scenarios. European Transport Research Review, 12(1), 17. https://doi.org/10.1186/s12544-020-00406-w
Quan, Q., Zhou, Q., Li, J., He, Y., Shuai, B., Williams, H., Xu, H., Li, Y., & Yan, F. (2021, March 2). K-Fold Fuzzy Learning for Implementation of Dynamic Programming Results in Real-Time Energy Management of the Plug-in Hybrid Vehicle. Applied Energy Symposium. Applied Energy Symposium. https://doi.org/10.46855/energy-proceedings-7444
He, Y., Makridis, M., Mattas, K., Fontaras, G., Ciuffo, B., & Xu, H. (2020). Introducing Electrified Vehicle Dynamics in Traffic Simulation. Transportation Research Record, 2674(9), 776–791. https://doi.org/10.1177/0361198120931842
Zhou, Q., He, Y., Zhao, D., Li, J., Li, Y., Williams, H., & Xu, H. (2021). Modified Particle Swarm Optimization With Chaotic Attraction Strategy for Modular Design of Hybrid Powertrains. IEEE Transactions on Transportation Electrification, 7(2), 616–625. https://doi.org/10.1109/TTE.2020.3014688
Shuai, B., Zhou, Q., Li, J., He, Y., Li, Z., Williams, H., Xu, H., & Shuai, S. (2020). Heuristic action execution for energy efficient charge-sustaining control of connected hybrid vehicles with model-free double Q-learning. Applied Energy, 267, 114900. https://doi.org/10.1016/j.apenergy.2020.114900
He, Y., Wang, C., Zhou, Q., Li, J., Makridis, M., Williams, H., Lu, G., & Xu, H. (2020). Multiobjective component sizing of a hybrid ethanol-electric vehicle propulsion system. Applied Energy, 266, 114843. https://doi.org/10.1016/j.apenergy.2020.114843
He, Y., Zhou, Q., Makridis, M., Mattas, K., Li, J., Williams, H., & Xu, H. (2020). Multiobjective Co-Optimization of Cooperative Adaptive Cruise Control and Energy Management Strategy for PHEVs. IEEE Transactions on Transportation Electrification, 6(1), 346–355. https://doi.org/10.1109/TTE.2020.2974588
Li, J., Zhou, Q., He, Y., Williams, H., & Xu, H. (2020). Driver-Identified Supervisory Control System of Hybrid Electric Vehicles Based on Spectrum-Guided Fuzzy Feature Extraction. IEEE Transactions on Fuzzy Systems, 28(11), 2691–2701. https://doi.org/10.1109/TFUZZ.2020.2972843
Zhou, Q., Li, J., Shuai, B., Williams, H., He, Y., Li, Z., Xu, H., & Yan, F. (2019). Multi-step reinforcement learning for model-free predictive energy management of an electrified off-highway vehicle. Applied Energy, 255, 113755. https://doi.org/10.1016/j.apenergy.2019.113755
Li, J., Zhou, Q., He, Y., Shuai, B., Li, Z., Williams, H., & Xu, H. (2019). Dual-loop online intelligent programming for driver-oriented predict energy management of plug-in hybrid electric vehicles. Applied Energy, 253, 113617. https://doi.org/10.1016/j.apenergy.2019.113617
He, Y., Ciuffo, B., Zhou, Q., Makridis, M., Mattas, K., Li, J., Li, Z., Yan, F., & Xu, H. (2019). Adaptive Cruise Control Strategies Implemented on Experimental Vehicles: A Review. IFAC-PapersOnLine, 52(5), 21–27. https://doi.org/10.1016/j.ifacol.2019.09.004
He, Y., Gao, X., Qiao, Y., & Xu, M. (2017). Occurrence forms of key ash-forming elements in defatted microalgal biomass. Fuel, 200, 182–185. https://doi.org/10.1016/j.fuel.2017.03.044