Recent publications
Article
Dymond, M & Kaluža, V 2024, 'Divergence of separated nets with respect to displacement equivalence', Geometriae Dedicata, vol. 218, no. 1, 15. https://doi.org/10.1007/s10711-023-00862-3
Dymond, M 2024, 'Lipschitz constant log n almost surely suffices for mapping n grid points onto a cube', Pure and Applied Functional Analysis, vol. 8, no. 6, pp. 1661-1677. <https://arxiv.org/abs/2010.15073>
Dymond, M & Kaluža, V 2023, 'Highly irregular separated nets', Israel Journal of Mathematics, vol. 253, pp. 501-554. https://doi.org/10.1007/s11856-022-2448-6
Dymond, M 2023, 'Porosity phenomena of non-expansive Banach space mappings', Israel Journal of Mathematics, vol. 255, pp. 931–953. https://doi.org/10.1007/s11856-022-2461-9
Dymond, M & Maleva, O 2020, 'A dichotomy of sets via typical differentiability', Forum of Mathematics, Sigma, vol. 8, e41. https://doi.org/10.1017/fms.2020.45
Bargetz, C, Dymond, M, Medjic, E & Reich, S 2020, 'On the existence of fixed points for typical nonexpansive mappings on spaces with positive curvature', Topological Methods in Nonlinear Analysis. https://doi.org/10.12775/tmna.2020.040
Dymond, M 2020, 'Typical differentiability within an exceptionally small set', Journal of Mathematical Analysis and Applications. https://doi.org/10.1016/j.jmaa.2020.124317
Dymond, M, Kaluža, V & Kopecká, E 2018, 'Mapping n Grid Points Onto a Square Forces an Arbitrarily Large Lipschitz Constant', Geometric and Functional Analysis. https://doi.org/10.1007/s00039-018-0445-z
Dymond, M 2017, 'On the structure of universal differentiability sets', Commentationes Mathematicae Universitatis Carolinae. https://doi.org/10.14712/1213-7243.2015.218
Preprint
Dymond, M & Kaluža, V 2024 'Extending bilipschitz mappings between separated nets' arXiv. <https://arxiv.org/abs/2410.22294>
Dymond, M & Kaluža, V 2021 'Divergence of separated nets with respect to displacement equivalence' arXiv. https://doi.org/10.48550/arXiv.2102.13046
Dymond, M 2021 'Porosity phenomena of non-expansive, Banach space mappings'. https://doi.org/10.48550/arXiv.2110.13722
Dymond, M & Maleva, O 2021 'Typical Lipschitz mappings are typically non-differentiable' arXiv. <https://arxiv.org/pdf/2111.09644.pdf>
Dymond, M 2020 'Lipschitz constant log{n} almost surely suffices for mapping n grid points onto a cube' arXiv. https://doi.org/10.48550/arXiv.2010.15073
Dymond, M & Kaluža, V 2019 'Highly irregular separated nets'.
View all publications in research portal