Recent publications
Article
Bespalov, A & Silvester, DJ 2023, 'Error estimation and adaptivity for stochastic collocation finite elements part II: multilevel approximation', SIAM Journal on Scientific Computing, vol. 45, no. 2, pp. A781-A797. https://doi.org/10.1137/22M1479361
Bespalov, A, Silvester, DJ & Xu, F 2022, 'Error estimation and adaptivity for stochastic collocation finite elements. Part I: single-level approximation', SIAM Journal on Scientific Computing, vol. 44, no. 5, pp. A3393-A3412. https://doi.org/10.1137/21M1446745
Bespalov, A, Praetorius, D & Ruggeri, M 2021, 'Convergence and rate optimality of adaptive multilevel stochastic Galerkin FEM', I M A Journal of Numerical Analysis. https://doi.org/10.1093/imanum/drab036
Bespalov, A, Loghin, D & Youngnoi, R 2021, 'Truncation preconditioners for Stochastic Galerkin finite element discretizations', SIAM Journal on Scientific Computing, vol. 2021, pp. S92-S116. https://doi.org/10.1137/20M1345645
Bespalov, A, Praetorius, D & Ruggeri, M 2021, 'Two-level a posteriori error estimation for adaptive multilevel stochastic Galerkin Finite Element Method', SIAM/ASA Journal on Uncertainty Quantification, vol. 9, no. 3, pp. 1184-1216. https://doi.org/10.1137/20M1342586
Bespalov, A & Xu, F 2020, 'A posteriori error estimation and adaptivity in stochastic Galerkin FEM for parametric elliptic PDEs: beyond the affine case', Computers & Mathematics with Applications, vol. 80, no. 5. <https://arxiv.org/pdf/1903.06520>
Khan, A, Bespalov, A, Powell, C & Silvester, D 2020, 'Robust a posteriori error estimation for stochastic Galerkin formulations of parameter dependent linear elasticity equations', Mathematics of Computation, vol. 0, 3572. https://doi.org/10.1090/mcom/3572
Bespalov, A, Rocchi, L & Silvester, D 2020, 'T-IFISS: a toolbox for adaptive FEM computation', Computers & Mathematics with Applications, vol. 81, pp. 373-390. https://doi.org/10.1016/j.camwa.2020.03.005
Bespalov, A, Betcke, T, Haberl, A & Praetorius, D 2019, 'Adaptive BEM with optimal convergence rates for the Helmholtz equation', Computer Methods in Applied Mechanics and Engineering, vol. 346, pp. 260-287. https://doi.org/10.1016/j.cma.2018.12.006
Bespalov, A, Praetorius, D, Rocchi, L & Ruggeri, M 2019, 'Convergence of adaptive stochastic Galerkin FEM', SIAM Journal on Numerical Analysis, vol. 57, no. 5, pp. 2359–2382. https://doi.org/10.1137/18M1229560
Crowder, A, Powell, C & Bespalov, A 2019, 'Efficient adaptive multilevel stochastic Galerkin approximation using implicit a posteriori error estimation', SIAM Journal on Scientific Computing, vol. 41, no. 3, pp. A1681-A1705. https://doi.org/10.1137/18M1194420
Bespalov, A & Rocchi, L 2018, 'Efficient adaptive algorithms for elliptic PDEs with random data', SIAM/ASA Journal on Uncertainty Quantification, vol. 6, no. 1, pp. 243–272 . https://doi.org/10.1137/17M1139928
Bespalov, A, Praetorius, D, Rocchi, L & Ruggeri, M 2018, 'Goal-oriented error estimation and adaptivity for elliptic PDEs with parametric or uncertain inputs', Computer Methods in Applied Mechanics and Engineering. https://doi.org/10.1016/j.cma.2018.10.041
Bespalov, A, Haberl, A & Praetorius, D 2017, 'Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems', Computer Methods in Applied Mechanics and Engineering, vol. 317, pp. 318-340. https://doi.org/10.1016/j.cma.2016.12.014
Bespalov, A & Nicaise, S 2016, 'A priori error analysis of the BEM with graded meshes for the electric field integral equation on polyhedral surfaces', Computers & Mathematics with Applications, vol. 71, no. 8, pp. 1636-1644. https://doi.org/10.1016/j.camwa.2016.03.013
View all publications in research portal