-
Li, R. Kuckhoff, T. Heuer, J. Landfester, K. and Ferguson, C. T. J., (2023), pH‐Triggered Recovery of Organic Polymer Photocatalytic Particles for the Production of High Value Compounds and Enhanced Recyclability, Angewandte Chemie 62, e202217652. doi.org/10.1002/anie.20221765
-
Heuer, J. Kuckhoff, T. Li, R. Landfester, K. and Ferguson, C. T. J. (2023), Tunable Photocatalytic Selectivity by Altering the Active Center Microenvironment of an Organic Polymer Photocatalyst, ACS Applied Materials and Interface Science, 15, 2, 2891–2900
-
Kim, S. Landfester, K. and Ferguson, C. T. J. (2022), Hairy Conjugated Microporous Polymer Nanoparticles Facilitate Heterogeneous Photoredox Catalysis with Solvent-Specific Dispersibility, ACS Nano, 16, 10, 17041–17048
-
Li, R. Landfester, K., and Ferguson, C. T. J. (2022), Temperature‐and pH‐Responsive Polymeric Photocatalysts for Enhanced Control and Recovery, Angewandte Chemie 61, 51, e202211132
-
Melchiors, M. S. Ivanov, T. Sayes, C. Araujo, P. Silva, L. Ferguson, C. T. J. and Landfester, K. (2022), Membrane Manipulation of Giant Unilamellar Polymer Vesicles with a Temperature‐Responsive Polymer, Angewandte Chemie,61, 39, e202207998
-
Huber, N. Sirim, M. Qian, Z. Ferguson, C. T. J. Wei, W. and Zhang, K. A. I. (2022), Water-Compatible Poly (methyl methacrylate) Networks for Visible Light-Driven Photocatalytic Pollutant Remediation in Aqueous Medium, ACS Applied Polymer Materials, 4, 8, 5728–5736
-
Heuer, J. and Ferguson, C. T. J. (2022), Photocatalytic polymer nanomaterials for the production of high value compounds, Nanoscale,14, 1646-1652, invited emerging investigator issue
-
Wei, W. Mazzotta, F. Landfester, K. Ferguson, C. T. J. and Zhang, K. A. I. (2022), Aerobic photobiocatalysis enabled by combining core–shell nanophotoreactors and native enzymes, Journal of the American Chemical Society, 144, 16, 7320–7326
-
Kuckhoff, T. Landfester, K. Zhang, K. A. I. and Ferguson, C. T. J. (2021), Photocatalytic hydrogels with a high transmission polymer network for pollutant remediation, Chemistry of Materials, 33, 23, 9131–9138
-
Ferguson, C. T. J. and Zhang, K. A. I. (2021), Classical polymers as highly tunable and designable heterogeneous photocatalysts, ACS Catalysis, 11, 9547-9560
-
Wei, W. Li, R. Huber, N. Kizilsavas, G. Ferguson, C. T. J. Landfester, K. and Zhang, K. A. I. (2021), Visible Light‐Promoted Aryl Azoline Formation over Mesoporous Organosilica as Heterogeneous Photocatalyst, ChemCatChem,13, 3410–34
-
Ferguson, C. T. J. Huber, N. Kuckhoff, T. Zhang, K. A. I. and Landfester, K. (2020), Dispersible porous classical polymer photocatalysts for visible light-mediated production of pharmaceutically relevant compounds in multiple solvents, Journal of Materials Chemistry A, 8, 1072-1076
-
Huber, N. Li, R. Ferguson, C. T. J. Gehrig, D. Ramanan, C. Blom, P. Landfester, K. and Zhang, K. A. I. (2020), A PMMA-based heterogeneous photocatalyst for visible light-promoted [4+ 2] cycloaddition, Catalysis Science & Technology, 10(7), 2092-2099
-
Ferguson, C. T. J. Huber, N. Landfester, K. and Zhang, K. A. I. (2019), Dual‐Responsive Photocatalytic Polymer Nanogels, Angewandte Chemie, 131, 10677-10681.