Research in the broad area of nonlinear systems encompasses a wide range of applications in engineering, industry, finance, environmental sciences and chemical and biological sciences, together with the development of fundamental mathematical theory and methodology.
In particular, application areas include nonlinear waves in alluvial river flows, oil pipe line flows, classical free surface flows and jets, while nonlinear oscillations are studied in feedback chemical reactions and hydrogen fuel cell models.
Reaction-diffusion theory is developed with emphasis of the evolution of travelling waves, extinction and blow-up in chemical, biological, medical and diffusive solvent systems. Mathematical theory is developed for singular non-Lipschitz reaction-diffusion systems, alongside the development of asymptotic methods for determining the large time structure for a generic class of nonlinear evolution PDE, such as the generalised Fisher, KdV, Burgers and KdV-Burgers equations.
Research on the theory of inverse problems in nonlinear PDE is focused around the development of stable numerical methodology, with particular applications in medical imaging and non-destructive testing.
The theory of autonomous holomorphic dynamical systems is also an active area of research, with attention being focused on generalised centre theorems for such systems. Methods are used to solve problems with multiple scales and with multiple physics.
Asymptotic methods used in quantitative finance are also studied. The research interests of the members of the group are given below.
Lecturer
Applications of mathematics in engineering, material science and industry. Especially singular perturbation theory and moving boundary problems. Examples include: oscillations of a viscous drop; strongly nonlinear waves; distensible tube wave energy converter; semiconductor lasers and laser percussion drilling.
Dr Warren Smith profile
Lecturer
The application of fluid dynamics to industrial and engineering problems, including liquid jet breakup, nonlinear waves, asymptotics, hydrogen fuel cell modelling, electro- and magnetohydrodynamics, biological and pharmaceutical applications.
Dr Jamal Uddin profile
Lecturer in Applied Mathematics
Transport, stirring and mixing of tracers, in both idealised and environmental settings, with particular interest in the propagation of chemical fronts.
Dr Alexandra Tzella profile
Lecturer in Applied Mathematics
Reaction-diffusion theory, maximum principles, dynamical systems and chemical reaction modelling.
Dr John Meyer profile