Unfortunately, after decades of continuous development, Ni-based superalloys are currently at their upper operating temperature limit. A suitable alloy system to replace Ni-based superalloys should be identified, but finding this alternative alloy system is not easy. These superalloys owe their exceptional properties to a two-phase system: γ, the native phase of pure Ni, and γ', which is the phase of the compound Ni3Al (see picture). The γ' phase is actually very similar to the γ phase, except that the Ni and Al atoms are arranged in a strict order, avoiding Al-Al nearest neighbour bonds. The special properties of these two phases lead to the formation of a microstructure consisting of little hard γ' phase cubic-shaped precipitates (the bricks) embedded in a matrix of γ phase (the mortar), as shown in the picture. This ‘bricks and mortar’ microstructure is exactly what you need to form a material fine-tuned for strength at high temperatures.
In order to find a new system to replace conventional Ni-based superalloys, we need this bricks and mortar microstructure. Initially, it appeared that the only binary system possessing the necessary combination of phases was the Ni-Al system, upon which conventional superalloys are based. In 2006, however, the γ/γ' microstructure was discovered in the Co-Al-W system (see picture). Replacing Ni-based superalloys with Co-Al-W-based superalloys appears promising: the melting temperature of these new alloys is 100°C higher than current commercial Ni-based superalloys. Will this result in alloys capable of working at 100°C higher than what is possible today? Much work is still needed in order to confirm this. First, the Co-Al-W-based superalloys’ composition should be tweaked to promote the presence of the γ' phase at higher temperatures (you would not want the bricks of your house to disappear). Second, the γ phase should be made more resistant to deformation (you would not want the mortar of your house to crumble away).