Further information, images and movies:
URL: www.et-gw.eu
• The School of Physics and Astronomy at the University of Birmingham is one of the largest in the country and has shown a strong performance in the most recent Research Assessment Exercise (2008). The scientists are active in wide range of research fields including Astronomy, Condensed Matter Physics, Nanoscale Physics, Nuclear and Particle Physics as well as Theoretical Physics.
• The Einstein Telescope Project (ET) is a joint project of eight European research institutes, under the direction of the European Gravitational Observatory (EGO). The participants are EGO, an Italian French consortium located near Pisa (Italy), Istituto Nazionale di Fisica Nucleare (INFN) in Italy, the French Centre National de la Recherche Scientifique (CNRS), the German Albert Einstein Institute (AEI) in Hannover, the Universities of Birmingham, Cardiff and Glasgow in the UK, and the Dutch Nikhef in Amsterdam. Scientists belonging to other institutions in Europe, as well as the US and Japan, actively collaborated in the realisation of this design study.
URL: www.et-gw.eu
• The direct detection of gravitational waves – predicted by Einstein’s theory of gravity, the General Theory of Relativity – is one of the most important fundamental research areas in modern science. Apart from verifying General Relativity, especially for extreme gravitational fields found in the vicinity of a black hole, GW detection could allow us, for the first time, to look back at the earliest moments of the Universe just after its birth. Cosmological observations are currently limited to those using electromagnetic waves and cosmic-rays (high-energy particles such as protons). This information can reach us from the past, but from a time no earlier than 380,000 years after the Big Bang. Before then, light and matter continually interacted, so that the Universe was rendered opaque. The Universe became transparent only when matter and light separated during this epoch. Cosmological epochs dating further back have thus far remained hidden, so it has not been possible to verify from observations the various theories about their nature. The direct measurement of gravitational waves may allow us “to listen” back as far as the first trillionth of a second after the Big Bang. This would give us totally new information about our Universe.
• GW research is a global effort because the full information about many GW sources can be obtained only with several interferometers working simultaneously in different places. Therefore, the US (LIGO), German-UK (GEO600), Italian-French and Dutch (Virgo) scientific communities have been working together closely for a long time. They share technology R&D and theoretical advances, as well as data-analysis methods and tools. The joint European project ET will help to improve further this worldwide collaboration.
The current observatories:
• GEO600, is a German-UK detector located near Hannover, Germany, and is operated by researchers at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute/AEI) in Hannover, and at the Universities of Glasgow, Cardiff and Birmingham in the UK. It is funded by the Max Planck Society, the state of Lower Saxony, the Volkswagen Foundation and the UK Science and Technologies Facilities Council (STFC). GEO works in close cooperation with the cluster of excellence, QUEST (Centre for Quantum Engineering and Space-Time Research), in Hannover.
URL: www.geo600.de
• Virgo is a 3-kilometre arm interferometer at Cascina, near Pisa, Italy. This project accomplished the additional goal of making low-frequency measurements at around 10Hz. Initially, Virgo was funded by the CNRS (Centre National de la Recherche Scientifique) and the INFN (Istituto Nazionale di Fisica Nucleare) but has now expanded to include Dutch, Polish and Hungarian research groups.
URL: www.virgo.infn.it
• The US LIGO detectors consist of 2-kilometre and 4-kilometre instruments at Hanford, Washington, and a 4-kilometre instrument at Livingston, Louisiana. The LIGO project has been developed and is operated by the California Institute of Technology (CalTech) and the Massachusetts Institute of Technology (MIT), and funded by the National Science Foundation (NSF).
URL: www.ligo.caltech.edu
For further information
Kate Chapple, University of Birmingham, tel 0121 414 2772 or 07789 921164.