Two papers detailing this research have been submitted for publication and posted on:
http://xxx.lanl.gov/abs/1011.3914 and http://xxx.lanl.gov/abs/1011.3916
Images and captions
Pictures of lead collisions and the ALICE detector can be found at:
http://epweb2.ph.bham.ac.uk/user/evans/lead2010/
and
http://aliceinfo.cern.ch/Public/Welcome.html
Images should be credited to CERN unless otherwise stated.
Further information
Kate Chapple, Press Officer, University of Birmingham, Tel: 0121 414 2772 or 07789 921164.
The ALICE Experiment
Physicists working on the ALICE experiment will study the properties, still largely unknown, of the state of matter called a quark-gluon plasma. This will help them understand more about the strong force and how it governs matter; the nature of the confinement of quarks – why quarks are confined in matter, such as protons; and how the Strong Force generates 98% of the mass of protons and neutrons. The ALICE detector is placed in the LHC ring, some 300 feet (100 metres) underground, is 52 feet (16 metres) high, 85 feet (26 metres) long and weighs about 10,000 tons.
The ALICE Collaboration consists of around 1000 physicists and engineers from about 100 institutes in 30 countries. The UK group consists of eight physicists and engineers and seven PhD students from the University of Birmingham. It plays a vital role in the design and construction of the central trigger electronics (the ALICE Brain) and corresponding software. In addition, the UK group is making an important contribution to the analysis of ALICE data.
During collisions of lead nuclei, ALICE will record data to disk at a rate of 1.2 GBytes (two CDs) every second and will write over two PBytes (two million GBytes) of data to disk; this is equivalent to more than three million CDs (or a stack of CDs (without boxes) several miles high). To process these data, ALICE will need 50,000 top-of-the-range PCs, from all over the world, running 24 hours a day.
ALICE utilises state-of-the-art technology including high precision systems for the detection and tracking of subatomic particles, ultra-miniaturised systems for the processing of electronic signals, and a worldwide distribution network of the computing resources for data analysis (the GRID). Many of these technological developments have direct implications to everyday life such as medical imaging, microelectronics and information technology.
CERN
CERN is one of the world’s largest and most respected centres for scientific research. Its business is fundamental physics, finding out what the Universe is made of and how it works.
University of Birmingham
The University of Birmingham is a truly vibrant, global community and an internationally-renowned institution. Its work brings people from across the world to Birmingham, including researchers and teachers and more than four thousand international students from nearly 150 different countries.
Science and Technology Facilities Council
The Science and Technology Facilities Council ensures the UK retains its leading place on the world stage by delivering world-class science; accessing and hosting international facilities; developing innovative technologies; and increasing the socio-economic impact of its research through effective knowledge exchange partnerships.
The Council has a broad science portfolio including Astronomy, Particle Physics, Particle Astrophysics, Nuclear Physics, Space Science, Synchrotron Radiation, Neutron Sources and High Power Lasers. In addition the Council manages and operates three internationally renowned laboratories:
- The Rutherford Appleton Laboratory, Oxfordshire
- The Daresbury Laboratory, Cheshire
- The UK Astronomy Technology Centre, Edinburgh
The Council gives researchers access to world-class facilities and funds the UK membership of international bodies such as the European Laboratory for Particle Physics (CERN), the Institute Laue Langevin (ILL), European Synchrotron Radiation Facility (ESRF) and the European Southern Observatory (ESO). It also contributes money for the UK telescopes overseas on La Palma, Hawaii, Chile, and in the UK LOFAR and the MERLIN/VLBI National Facility, which includes the Lovell Telescope at Jodrell Bank Observatory.
www.stfc.ac.uk
* More information on the previous, lower energy results can be found at:
http://www.bnl.gov/rhic/news2/news.asp?a=1074&t=pr