Scientists at the University of Birmingham funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have discovered that a gene called DAF-16 is strongly involved in determining the rate of ageing and average lifespan of the laboratory worm Caenorhabditis elegans (C. elegans) and its close evolutionary cousins.
DAF-16 is found in many other animals, including humans. It is possible that this knowledge could open up new avenues for altering ageing, immunity and resistance to stresses in humans. The research is published today (01 April) in PLoS ONE.
Dr Robin May from the University’s College of Life and Environmental Sciences, who led the research said: “Ageing is a process that all organisms experience, but at very different rates. We know that, even between closely related species, average lifespans can vary enormously.
“We wanted to find out how normal ageing is being governed by genes and what effect these genes have on other traits, such as immunity. To do that, we looked at a gene that we already knew to be involved in the ageing process, called DAF-16, to see how it may determine the different rates of ageing in different species.”
Dr May and colleagues compared longevity, stress resistance and immunity in four related species: Caenorhabditis elegans, Caenorhabditis briggsae, Caenorhabditis remanei and Caenorhabditis brenneri. They also looked for differences in the activity of DAF-16 in each of the four species and found that they were all quite distinct in this respect. And, importantly, the differences in DAF-16 corresponded exactly to differences in longevity, stress resistance and imunity in the four species – in general more DAF-16 activity means longer life, increased stress resistance and better immunity against some but not all diseases.
Dr May continued: “DAF-16 is part of a group of genes that drive the biological processes involved in ageing, immunity and responses to physical or environmental stresses. The fact that subtle differences in DAF-16 between species seem to have such an impact on ageing and health is very interesting and may explain how differences in lifespan and related traits have arisen during evolution.”