Ribeiro et al., B Cells, Irish Flow Cytometry Society Meeting, Dublin 25th - 26th February 2014

B lymphopoiesis in pregnant women

Andreia Ribeiro¹, Tiago Carvaleiro², Ana Lopes², Artur Paiva² and Rhodri Ceredig¹

¹Immunology Group, Regenerative Medicine institute, National University of Ireland, Galway, ²Blood and Transplantation Center of Coimbra, Portuguese Institute of Blood and Transplantation, Coimbra, Portugal

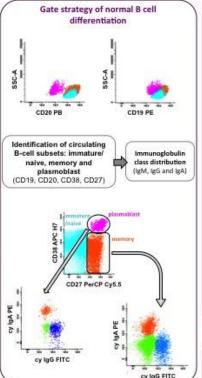
Introduction

B cell development and haematopoisis are very complex processes. During pregnancy, changes in the haematopoietic system are dramatic with huge demand on erythropoiesis. In mice, it is known that B cell production is temporary interrupted during pregnancy due to a decrease in IL-7 availability [1]. Reduction in IL-7 production is controlled by sex progesterone. We decided to investigate the B cell profile of peripheral blood during human pregnancy in order to see if B lymphopoiesis was similarly affected.

Aim of the study

To determine if there is a reduction in B lymphopolesis in pregnant women and to look for different B cell subpopulations. Blood was collected in all three trimesters.

Methods EDTA Peripheral Blood CD27 PE Cy5 + CD19 PE Cy7 + CD38 APC Cy7 + CD20 eFluor + CD45 Krome Orange Reagent 1 (Beckman Coulter IntraPerp kit) Wash Reagent 2 cylgG FITC + cylgA1(a1) PE + cylgM APC Wash twice


Analysis:

Flow files were analized with Infinicyt 1.7.0 software (Cytognos) and the statistic analysis with Excel and GraphPad Prism software.

Acknowledgements

This work was supported by the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement number 315902 – DECIDE Project

All the samples were prepared and acquired in IPST, Institute of Blood and Transplantation in Portugal

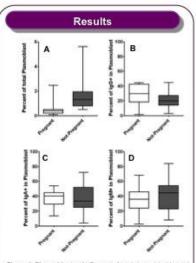


Figure 1. Plasmoblasts. (A) Percent of total plasmoblast in total of CD45° cells in human peripheral blood from pregnant and not-pregnant women. (B) (C) and (D) Percent of IgG*, IgA* and IgM*, respectively, in the total plasmoblast in human peripheral blood from pregnant and not-pregnant women.

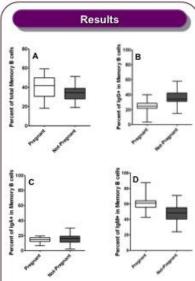


Figure 2. Memory B cells. (A) Percent of total memory B cells in total of CD45° cells in human peripheral blood from pregnant and not-pregnant women. (B) (C) and (D) Percent of IgG*, IgA* and IgM*, respectively. in the total memory B cells in human peripheral blood from pregnant and not-pregnant women.

Future Experiments

Although IL-7 has been shown to play a fundamental role in mouse B lymphopoiesis, its role in human B lymphopoiesis is controversial. We plan to measure serum IL-7 and erythropoietin levels in the serum during pregnancy.

Conclusions

This is the first time that a systematic analysis of B lymphopoiesis has been carried out in human pregnancy. Our preliminary results indicate that unlike mice, B lymphopoiesis is not drastically perturbed during pregnancy.

Comparing samples from pregnant women with non-pregnant controls, our results suggest that the percentage of IgA* and IgG* plasmoblast as well as memory IgM* is higher during pregnancy.

However we still need to do further studies to identify, characterize and understand these changes.

References

 Nabil Bosco, Rhodri Ceredig and Antonius Rolink; "Transient decrease in interleukin-7 availability arrests B lymphopolesis during pregnancy", 2008; European Journal of Immunology; 38: 381-390

