

Synthesis and biological activity of analogs of 1,25-dihydroxyvitamin D₂

Narasimha Bolla Rao¹, Aoife Corcoran², Kaori Yasuda³, Michał Chodyński¹, Krzysztof Krajewski¹, Piotr Cmoch¹, Ewa Marcinkowska², Geoffrey Brown⁴, Toshiyuki Sakaki³, Andrzej Kutner¹

¹Pharmaceutical Research Institute, 01-793 Warsaw, Poland; ²Faculty of Biotechnology, University of Wroclaw, 50-383 MARIE CURIE — Wroclaw, Poland; ³Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; ⁴School of Immunity and Infection, University of Birmningham, B15 2TT, UK

Introduction

PEOPLE

- •To understand the complexity of mechanism of functions of vitamin D numerous laboratories have endeavoured studies over several decades.
- This has been driven by interests to find analogues with selective activity as therapeutics against cancer, cardiovascular
 and immune diseases. In this regard we pursued the design and synthesis and biological evaluation of 1,25D2 analogues.

Characterisation

NOE NMR experimental proof for the new structures

600 MHz-¹H NMR Spectra showing NOE

• An improved synthetic strategy was developed for previously obtained PRI-1906 and PRI-1907. 24(*Z*) isomers PRI-1916 and PRI-1917 were also obtained and identified.

Design

Structures of 1α , 25-dihydroxyvitamin D₃ and 1α , 25-dihydroxyvitamin D₂

ЪЮ

Structures of side-chain homologated and unsaturated analogues of 1,25-D2.

Biological evaluation

Human VDR binding affinity

Hypothetical structures of 22Z-analogs

Acknowledgements:

Compound	1,25D3	PRI-1906	PRI-1916	PRI-1907	PRI-1917
IC ₅₀	2.232e ⁻⁰⁹	5.561e ⁻⁰⁰⁸	6.048e ⁻⁰⁹	6.172e ⁻⁰⁹	6.848 e⁻ ⁰⁰⁸
Relative binding affinity ^a	100	4	37	38	3

Metabolic resistance of analogs to CYP24A1

Compound	1,25D3	1,25D2	PRI-1906	PRI-1916	PRI-1907	PRI-1917
Metabolic conversion ^a	49	39	2.3	11	0.8	10
(%)						

Reference: Bolla, N. R.; Corcoran, A.; Yasuda, K.; Chodyński, M.; Krajewski, K.; Cmoch, P.; Marcinkowska, E.; Brown, G.; Sakaki, T.; Kutner, A., *J. Steroid Biochem. Mol. Biol.* online 28 August 2015. <u>doi:10.1016/j.jsbmb.2015.08.025</u>

