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Abstract

This paper describes an optimal algorithm using continuous state Hidden Markov
Models for solving the HMS decoding problem, which is the problem of recov-
ering an underlying sequence of phonetic units from measurements of smoothly
varying acoustic features, thus inverting the speech generation process described
by Holmes, Mattingly and Shearme in a well known paper (Speech synthesis by
rule, Language and Speech 7 (1964)).

Keywords: Speech Recognition, Hidden Markov Model, Recognition by
Synthesis.

1. Introduction

1.1. Overview

This paper addresses the problem of correctly incorporating dynamic infor-
mation into the acoustic models used for speech recognition.

For several decades the dominant algorithms in the field have had recognised
weaknesses in handling dynamics. The algorithms are based on Hidden Markov
Models (HMM s) in which the state space is discrete – for this reason we will
refer to them as Discrete State HMMs (or DS-HMM s). The feature vectors have
been made up of spectral band energies or their transformation into cepstra. An
overview of the use of HMMs in speech recognition is given by Gales and Young
(2007).

The physical properties underlying speech consist of the smooth motion of
articulators between positions defined by the various sounds. The same smooth-
ness can be seen in acoustic features – at least for sonorant sounds – if they are
chosen appropriately whereas features chosen for their ease of extraction may
exhibit intractable dynamics.
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Figure 1: Spectrogram showing the first two voiced phonemes of ‘He will...’ together with
band energies and their derivatives for the spectral region containing F2.

Models of speech which preserve the salient features of the production pro-
cess are attractive for use in recognition because they inherit the smoothness
of the underlying mechanisms. Conventional recognisers fail in this respect for
two reasons. Firstly a continuous transition cannot be properly modelled as a
sequence of discrete states, and secondly the approximately linear properties of
the underlying features lose their structure when expressed in terms of spectral
band energies.

The designers of speech recognition systems have sought to remedy these
weaknesses by a number of strategies. One is to incorporate time derivatives
(deltas) of cepstral features (Furui, 1981). This is easy to accomplish but ques-
tionable in terms of model coherence (Tokuda et al., 2003).

Figure 1 shows the spectrogram for part of the TIMIT utterance ‘He will
allow a rare lie’. It contains most of the steady state (for which we will later
define the term dwell) of the ‘e’ of ‘he’, the transition to the following ‘w’, and
most of the corresponding steady state. The F2 path (idealised as a piecewise
linear yellow line) is fully intelligible in terms of the phonetic sequence. The
solid blue lines on the right of the figure show the energies of triangular mel-
spaced bands in the F2 region. Each of these makes sense in terms of the
formant motion but not phonetically; it seems odd, for instance, to say that the
transition from ‘e’ to ‘w’ is characterised by a brief activation of the band at
1724Hz about an eighth of the way through. The linearity of the formant feature
has been replaced a complicated interdependence between band energies.

The orange dashed lines are the derivatives of the band energies (computed
in the normal way).

The second strategy for capturing dynamic properties in a speech recogniser
is to add parameters whose function is to describe transitions explicitly. We
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contend that it is more natural and more economical to infer the properties of
transitions through the structure of the model. This is the subject of the present
paper, in which we seek to show how models of individual phonetic units can
be constructed in such a way that the properties of transitions can be inferred
by interpolation. A model with these properties is likely to be closely related
to the speech production process (as ours is), since acoustic features gain their
interpolability by reflecting the smooth motion of articulators.

Standard DS-HMMs try to model transitions by splitting each sound into
substates some of which fall in transition regions, and then estimating the pa-
rameters of each phonetic unit according to its context. If the transition from ϕ0

to ϕ1 is split into sufficiently many substates, and if the properties of each sub-
state are estimated for the pair (ϕ0, ϕ1) rather than for an individual phonetic
unit, then a good enough approximation will be obtained.

The main penalty to capturing properties through parameters rather than
through model structure is that the amount of training data needed by an
algorithm increases with the size of its parameter space. But a more insidious
penalty lies in the fact that an algorithm whose strength lies in the number of
its parameters sheds no light on the problem it addresses.

1.2. Views of speech dynamics

A number of attempts have been made to incorporate faithful models of
speech dynamics into recognition algorithms. Many of these have been based
on segment models whose theory was developed by Gales and Young (1993), by
Russell (1993), by Holmes and Russell (1999), and by others.

If the decision is taken to view speech as comprising trajectories in a suit-
able space, then a question arises over the position in the model of the variables
subject to trajectory dynamics. Two options suggest themselves. The first is to
construct models with hidden components behaving in a smooth way and de-
termining the observation probabilities (which may be based on power spectral
estimates). A mapping needs to be constructed from the states to the observa-
tions, and this is where the difficulty lies: if the state space is based on anything
like formants and the observations are anything like spectral bin energies, then
the true relationship between them is radically non-linear, and any approxima-
tion which lends itself to analytical treatment (such as assumed linearity) will
be highly counterfactual.

Examples of this approach are the methods developed by Deng and Ma
(Deng, 1998; Deng and Ma, 2000), and the Multiple-level Segmental HMMs of
Russell and others (Russell and Jackson, 2005; Russell et al., 2007). Russell and
his co-workers assume a linear mapping as an approximation to the relationship
between spectral measurements and the underlying features; the remaining pa-
pers invoke multilayer perceptrons to overcome the nonlinearity of a relationship
which is not further specified.

The second avenue is to directly estimate the underlying smoothly varying
features from the audio signal and to use them as input to a recognition al-
gorithm. The most significant difficulty here lies in feature estimation: if the
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features are interpreted as formant frequencies then we immediately encounter
the problem of formant tracking, which can be performed fairly reliably by eye
but for which no satisfactory computer algorithms exist (Deng et al., 2006).
Direct measurement of articulatory features, eg. by EMA (Richmond et al.,
2003; King et al., 2007), would be an alternative approach, but here too there
are difficulties in estimating the features directly from audio.

The second difficulty lies in making use of the measured features. This is the
problem addressed below: models with hidden components need to address the
same problem, so in one form or another it has received considerable attention
in the literature.

Most earlier work has been based on segmental HMMs, whose relationship
to the algorithm of this paper will be made clear later (see §2.4): we claim that
we are providing an optimal solution to a problem which is only approximately
solved by segmental HMMs.

Another related approach is the Hidden Dynamical Model of Richards and
Bridle (1999). This uses a characterisation of formant tracks which is more
flexible than piecewise linearity (and may therefore be said to model the smooth
acceleration as well as the smooth motion of articulators), but is able to do so
only at the cost of not being expressible in a computationally feasible algorithm
for recovering the optimal phonetic or lexical sequence. The Hidden Dynamical
Model can be used to rescore a recovery made by other means but not as the
basis for a decoder in its own right. We believe that the method of the present
paper does the best job possible of capturing the properties of speech which arise
from its production method subject to the constraint that its optimum can be
found by an efficient search algorithm (in our case the dynamic program).

Less directly comparable are the methods adopted by recognisers based on
neural networks. These contain nothing specific to dynamics at all: they see
nothing but a sequence of observations. If an exploitable structure is apparent
from the training data then they may take advantage of it. Having no concept of
state, a feed-forward neural network is limited to what it can see within a given
time window, but recurrent neural networks can make use of cyclic connections
to capture longer term effects (see Sak et al. (2014)).

1.3. A model of speech

The starting point of the present paper is the synthesis model put forward
by Holmes et al. (1964, hereafter HMS ), which portrays speech as an alterna-
tion between dwells at phonetic targets and transitions between them, and in
which the motion is roughly linear in a suitable space, understood by the au-
thors as the space of formant frequencies. Holmes, Mattingly and Shearme did
not propose a recognition algorithm based on their model, though John Holmes
repeatedly advocated use of parametrically modelled dynamics for speech recog-
nition (Holmes and Holmes, 2001), an approach which has come to be known
as Recognition by Synthesis (Paliwal and Rao, 1982).

This paper assumes a simplified version of the HMS model. Each phonetic
unit is characterised by a canonical target for the acoustic feature. We think of
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formant frequencies as the prototypical features but any measurable properties
(such as loudnesses or bandwidths) can be included. An articulation of a sound
includes a period (the dwell) during which the realised target is constant: the
realised target comes from a Gaussian distribution whose mean is the canonical
target. Observations will be distributed (and assumed Gaussian) about the
realised target. Dwells will normally be assumed to have positive length, but
dwells of length 0 are covered by the same formulae (see §2.9) whereas dwells
of negative length (explained in §2.10) can be handled with a little extra work.

The articulators move smoothly between one phonetic unit and another: the
intervening period is known as a transition, in which the acoustic feature starts
from the realised target of one unit and moves linearly to the realised target
of the next. Transitions of length 0 (which would equate to discontinuities in
the trajectories) are prohibited a priori although they would not be difficult to
allow for (and might be appropriate for modelling unvoiced sounds).

The smooth motion assumed by our model is in sympathy with the seg-
mental properties of the models cited in §1.2. We simplify the HMS model by
concentrating our attention on sonorant sounds, and by treating a transition as
a single linear trajectory rather than as two.

1.4. Realised and canonical targets

The distinction between realised and canonical targets is absent from HMS,
which seeks to specify an exemplar of a sound rather than the space of legal
instances.

If we consider a single occurrence of a phonetic unit, there will be systematic
departures of the observations from the canonical mean: these are reflected in
the displacement of the realised from the canonical target. The causes will
include factors due to the dimensions of the speaker’s vocal tract and to other
properties of his physiology and behaviour; due to phonetic phenomena such
as coarticulation; and due to random imprecisions in motor control. A more
complete model of speech would handle some of these factors explicitly. We
discuss later (§4.1) how the model of the present paper extends to vocal tract
length; coarticulation also fits naturally into the same framework.

All non-systematic departures of observations from the canonical target are
treated as Gaussian noise about the realised target. The two forms of departure
from the canonical norm are illustrated in Figure 2.

Although the departure of observations from the realised target is treated as
a Gaussian error term, it should not be seen as a satisfactory representation of
measurement error. A main component will be the departure of formant tracks
from piecewise linearity.

On the other hand the most important source of measurement error, so far
as a formant tracker is concerned, is likely to lie in labelling. We do not know
the limit of what can be achieved by a formant tracker, but we can be fairly
certain that there will be cases in which the acoustics do not determine whether
a spectral peak corresponds to F2 or to F3. If errors of this sort are present they
will be severely non-Gaussian. However the natural way to guard against them
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Figure 2: An idealised model of formant tracks. The canonical pronunciations are shown
as dashed orange lines; the realised targets (solid blue) differ slightly from them; and the
observations are crosses distributed about the realised targets.

is by requiring the formant tracker to output alternative labellings whenever
there is ambiguity (as does the formant tracker described by Holmes (2001)).
The decoding algorithm can then consider alternative labellings at the same
time as it considers alternative phonetic hypotheses.

1.5. The continuous state HMM and other formalisms

The method of this paper is based on the CS-HMM algorithm (standing for
‘continuous state HMM’). CS-HMMs have been known about for some years
(Ainsleigh, 2001). The operations available for DS-HMMs – the dynamic pro-
gram (Bellman, 1954), the alpha and beta passes, the gamma calculation, and
the re-estimation formulae (Baum et al., 1970) – all carry over to CS-HMMs
given suitable assumptions of Gaussianness and linearity.

The proofs are fairly direct. At each step a term is derived which is the
product of scaled Gaussians; the formulae are expanded (perhaps at considerable
length) and then collapse down (by the process of completing the square) to
give a new formula which is often very simple. Indeed, it may turn out to
be deceptively simple. Sometimes it is the formula that would be guessed by
someone who was asked to provide an estimate of a particular unknown from
the data seen so far, and this may create the illusion that the unknown is indeed
being estimated when in truth it is being marginalised – that is, averaged over.

In our development all distributions except timing are pure Gaussians. The
CS-HMM framework allows GMMs to be used in their place (as for DS-HMMs),
but we consider them to be inconsistent with our aim of limiting parameters to
those which are phonetically meaningful.

CS-HMMs are an alternative formulation of the ideas which are also familiar
in the guise of the Kalman filter (Kalman, 1960). The relationship is discussed
in detail by Ainsleigh (2001). It is most important, in the current context, to
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distinguish the Baum-Welch alpha pass (which computes a sum) from a branch-
ing algorithm along the lines of the dynamic program (which finds a maximum).
The algorithm of this paper makes sequential assumptions about the discrete
state components (seeking the sequence which maximises likelihood), and does
so using an alpha pass (and therefore summing paths over continuous compo-
nents) to compute the likelihoods of the sequences.

1.6. Outline of the present paper

The problem we address is that of recovering an underlying sequence of pho-
netic units given acoustic measurements: we refer to this as the HMS decoding
problem. The method we propose is a thresholded dynamic program based on
continuous state HMMs, and we believe that it provides a near-optimal recog-
nition procedure. The algorithm is specified in detail by separate equations
for the different cases which arise from dwells, transitions and the alternation
between them.

A more detailed and precise statement of the algorithm can be obtained from
the source code of our implementation (Houghton, 2014).

The claims we make for our algorithm, to be precise, are that it assigns the
true probability under the model to each hypothesis it considers, where this
probability takes account of all legal piecewise linear continuous trajectories;
that hypotheses are ranked according to their likelihoods at each point in a way
which sacrifices little information; and that the likeliest path will be output
at the end so long as the thresholding has not been too aggressive. We also
believe that the algorithm is as computationally efficient as the nature of the
optimisation problem allows.

Our discussion does not cover parameter estimation. We have already men-
tioned the fact that the Baum-Welch algorithm can be applied to CS-HMMs as
well as to DS-HMMs, but we believe that this is more powerful machinery than
is needed. The decoding algorithm presented below can be extended to provide
a Viterbi training procedure with very little effort, and given our intention to
limit the parameters of the system to those which are phonetically meaningful
we believe that no more is needed. (In fact Viterbi training is found sufficient
for Kaldi by Povey et al. (2011) for parameters other than those relating to
GMMs.)

It may be helpful to indicate where the model of the present paper lies in
the continuum between ‘knowledge-based’ and ‘data-driven’ approaches. The
model is automatically trainable but leaves space for the incorporation of lin-
guistic properties felt to be important. It needs sonorant sounds to be modelled
differently than unvoiced consonants (although we believe that the right way
of analysing unvoiced consonants would have mathematical similarities to the
model proposed below).

After describing our algorithm we present an experiment on toy data made
up of sinusoidal speech. This experiment shows the effectiveness of the algorithm
even when its features are formant estimates from a simplistic tracker. We
compare the CS-HMM with the discrete alternative and we compare formant
features with cepstra.
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We then show how the CS-HMM can be applied to global properties of the
speech signal, with vocal tract length being used in illustration. We believe that
this shows our model to have a power which others lack. Finally we present a
few conclusions.

Time in this paper is discrete (written t – the units of time are ticks), and
acoustic features are m-dimensional. The phonetic units will be chosen as mean-
ingful categories corresponding to sounds whose distribution can reasonably be
modelled as Gaussian. Thus the English schwa would probably belong to the
inventory as a single unit even if its instances differ too much to be labelled
as a single phone; the consonant ‘l’ on the other hand has two distinct realisa-
tions (clear and dark) which would probably be represented as separate phonetic
units.

The phonetic inventory is assumed known and fixed, with the canonical pro-
nunciation of each unit specified by an m-long vector of target values. Durations
can be modelled in whatever way is most suitable, and a language model can
be used to assist recovery (otherwise we assume that all units are equally likely
in all contexts).

2. Application of CS-HMMs to speech recognition

2.1. Structure of the algorithm

The algorithm we describe is a sequential branching process for recovering
an unknown phonetic sequence. At each time step we have a list of hypotheses
containing information about the state. A state contains both continuous and
discrete components. The discrete components are as follows:

• The identity of the current phonetic unit (or of the unit we are leaving in
the case of a transition);

• The number of ticks h we have spent in the current dwell or transition;

• The identity of as many previous phonetic units as are needed by the
language model; and

• A flag to indicate whether we are in a dwell or a transition.

During a dwell the state has a single continuous component, namely

• an m-long vector comprising the realised targets of the current phonetic
unit (where m will be 3 if our features are three formant frequencies).

During a transition the state contains two continuous components, which are

• an m-long vector comprising the realised targets of the phonetic unit just
left; and

• an m-long vector of slopes of the acoustic features.
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Each hypothesis stores probability information about an infinite set of con-
tinuous states in the form of a Baum-Welch alpha value: that is, the alpha value
αt associated with a given state is a sum of probabilities over all paths leading to
the continuous state component and consistent with the discrete state history.
This is a sum over paths of the product of path transition probabilities and
observation probabilities given the path. (We will qualify this slightly when we
come to the section on entering a dwell state.) αt combines information from
observations y0...yt−1.

In order to be able to store an infinite number of values we need them to
take a functional form, and we find that we may express the alpha values of all
states associated with a hypothesis in the form of a scaled Gaussian distribution
which we shall write as αt(x) during a dwell and as αt(x, s) during a transition,
where x is the realised target and s is the slope.

The Gaussianness of the alphas is established inductively from the Gaus-
sianness postulated for the realised targets given phonetic identity and for the
observations about the realised targets.

When we express alpha values as a scaled Gaussian, its parameters – the
mean, variance and scale factor – are stored as part of each hypothesis. The
scale factor is the sum over all paths up to the current time, and ending in the
current discrete state, of the joint probabilities along the path: this is exactly
the quantity we will want to threshold on in order to limit the number of hy-
potheses we retain (where ‘joint probability’ is understood to mean ‘product of
pdf values’).

Hence we may enumerate the components of a hypothesis as follows:

• The discrete state components as listed above; and

• The mean µt, precision pt and scale factor kt of the scaled Gaussian dis-
tribution governing the alphas of all states whose discrete components are
those of the current hypothesis.

At each step we will have a number of hypotheses under consideration, each
of which will be capable of being extended in more than one way, giving a
longer list of candidate hypotheses at the next time step. But as we extend the
hypotheses we gain further information from a new observation, allowing us to
threshold the list.

If a hypothesis is in a dwell state, we have the choice of continuing the dwell
for one more unit of time, or of setting off on a transition, padding out the
continuous state with a slope vector.

If a hypothesis is in a transition, we have the choice of continuing the tran-
sition for one more tick or of entering a dwell. A third option arises owing to
the possibility of zero-length dwells: we may come to the end of one transition
and begin another. This option does not need special treatment so long as we
are careful in handling both the beginnings and the ends of transitions. The
formulae needed for evolving the state in the various cases will be presented
below.

9



As a notational convenience, we will write

n(x, p) = (2π)−m/2|p|1/2 exp{− 1
2xpx

T} (1)

for the Gaussian probability density function in which p is the precision (inverse
variance). At no point do we assume precisions to be diagonal, although they
will often be so and calculations can be simplified accordingly. Vectors are rows.

With this notation we can represent an alpha value as

αt = ktn(x− µt, pt). (2)

2.2. Timing model

We define the length (or duration) of a dwell or transition to be the time dif-
ference between its end and its start. The number of observations corresponding
to it will be 1 greater; hence the dwell near the middle of Figure 2 is 4 ticks
long although 5 observations are centred on its target.

We write P (h) for the probability that the next time step stays in a dwell
whose length so far is h ticks (with P (−1) for now defined to be 1). The
probability of leaving a dwell having spent h ticks in it is (1 − P (h)), and we
similarly write P ′(h) as the probability of staying in a transition given that h
ticks have been spent in it. For dwells (though perhaps not for transitions) it
is likely to be beneficial to make the timing model depend on the phonetic unit
(as Pϕ(h)). The probability of a dwell having total length L is then calculated
as

(1− P (L))

L−1∏
t=0

P (t). (3)

The timing model will be estimated from data. If we make a histogram D(t)
of dwell times t, then

P (t) =

∑∞
τ=t+1D(τ)∑∞
τ=tD(τ)

. (4)

The transformation from D to P puts the timing model in the form of a Markov
process.

In an exponential timing model the P (t) will be equal, and it is convenient
to constrain a model to this form for large durations.

2.3. Stepping through a dwell

Let us begin the induction assuming that the first time step is the start of a
dwell period for some unspecified phonetic unit. We will therefore initiate the
list of hypotheses with a single entry for each unit in the inventory. For a given
ϕ we shall assume that target realisations x are distributed as

n(x− θϕ, cϕ) (5)

where θϕ is the canonical mean for ϕ and cϕ is the precision. Meanwhile an
observation y is distributed around the unknown realised target x as

n(y − x, e) (6)
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where e is the measurement precision.
Let y0 be the first observed measurement. Then we may write

α1(x) = P (−1)n(y0 − x, e)n(x− θϕ, cϕ) = k1 n(x− µ1, p1) (7)

where

µ1 = (θϕcϕ + y0e) (cϕ + e)−1, (8)

p1 = cϕ + e, and (9)

k1 = P (−1)n(y0 − θϕ, (c−1ϕ + e−1)−1) (10)

and P (−1) = 1 by convention. We may set h to 0 for the next step.
The fact that the product of two Gaussians is itself a scaled Gaussian is well

known. The process of finding the coefficients of the product is an example of
completing the square.

We may proceed in the same way for as many steps as we assume we spend
in the dwell phase. The general formula is

αt(x) = kt n(x− µt, pt) (11)

where

µt = (µt−1pt−1 + yt−1e)(pt−1 + e)−1, (12)

pt = pt−1 + e, and (13)

kt = kt−1 P (h)n(yt−1 − µt−1, (p
−1
t−1 + e−1)−1). (14)

We notice that the precision pt increases at each step, implying that the
distribution on the realised target becomes tighter as we acquire further obser-
vations.

2.4. Relationship to segmental models

It is useful to take stock at this point and see what we have achieved. We
have computed the posterior distribution and path likelihood of all possible
realised targets x using a hierarchical model in which observations are subject
to a Gaussian distribution about the realised target and the realised target
is subject to a Gaussian distribution about the canonical target. This is a
perfectly routine calculation, but what is interesting is that we have performed
it inductively using a Baum-Welch alpha pass iteration.

The main aim of trajectory segmental HMMs is to apply the same hierar-
chical model to the same sort of observation; however the continuous-valued
realised target is excluded from the state. This omission is crucial. In an HMM
the state is constrained by a probability distribution as it advances from time to
time, and this distribution can be used to enforce continuity. The observations,
by contrast, are conditionally independent given state. Therefore continuity
can be imposed only on state variables, and when consistency is required of
continuous quantities, a CS-HMM needs to be used.
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The method by which segmental HMMs seek to impose continuity is to group
together the time steps belonging to a dwell period into a single segment. The
observations are treated as a single compound observation subject to a proba-
bility density function, but this pdf is not constrained to being the product of
pdf values for individual observations. Instead, the correct hierarchical calcula-
tion is performed and used as the pdf for the entire observation sequence. The
segmental HMM then moves on to considering a transition region as a segment
in its own right, and so forth.

The unsatisfactory feature of the segmental HMM is that it sacrifices the
economy of the inductive Baum-Welch computation within a segment. However
it also sacrifices the consistency property of realised targets between segments.
The correct way of handling the transition following a dwell would ensure that
the realised target at the beginning of the transition was equal to the realised
target of the preceding dwell. The segmental model has no way of achieving this
because its mechanism for imposing consistency works only within a segment.

When we discuss vocal tract length normalisation later, we will see that
certain approximations allow us to regard vocal tract length as coming from a
distribution in just the same way as realised targets, and allow us to average
over vocal tract lengths in such a way that all paths through the data assume
the same vocal tract length, but that paths are considered for every possible
vocal tract length. To get the same effect with a segmental HMM it would be
necessary to treat the entire utterance as a single segment without any attempt
at inductive calculation.

Meanwhile we return to the details of how a CS-HMM can be used to analyse
sonorant sounds.

2.5. Choice of methods for handling transitions

During a dwell the continuous component of state is the hidden vector of
realised targets x. During a transition we will need to extend it to a longer
vector.

One way of doing this, when we leave a phonetic unit ϕ, is to assume the
identity of the destination ϕ′ and the duration L of the transition. The contin-
uous component of state can then be a 2m-long vector (x,x′) comprising the
pair of realised targets. Given L we know the expected values of observation
vectors at any point during the transition as a linear function of x and x′. This
gives us the strongest possible model for predicting observations, but at the cost
of a large branching factor.

If we proceed in this way, it is worth noting that no distribution on slopes ever
needs to be written down: an implicit distribution is given by the distributions
on targets and on durations, and this is all we need. But we have had to choose
L from what may be a large set before seeing the observations which supply us
with information about it.

We can avoid the expense of making this assumption in advance by instead
extending the continuous state component into the vector (x, s) where s is the
slope of x. The centre of the observation distribution after h ticks will then
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be x + hs. When we come to the end of the transition we can convert the
assumption of a slope into an assumption of a realised target by marginalisation
and bring in the distribution on realised targets as part of the calculation. The
method used in Weber et al. (2014) was to do just this without making use of
any prior distribution on the slope.

We no longer feel that this method can be justified. If we have spent h ticks
in a dwell, then the correct formula for the alphas one step into a following
transition is

αt(x, s) = (1−P (h)) f(s) n(x+s−yt−1, e) αt−1(x) (15)

where f(s) is the distribution on slopes. Now the term f(s) has only a tempo-
rary effect since at the end of the transition we will remove it in favour of terms
expressing the probabilities of the new targets and of the transition duration;
and this was the reason for effectively discarding it in Weber et al. (2014). But
the consequence was that when a hypothesis in a transition was compared with
a hypothesis in a dwell, a term was omitted which might have influenced the
result, namely the convolution of the transition alphas with f(s).

So we feel that the term needs to be included and subsequently removed.
Accordingly we will adopt a Gaussian prior n(0, v) on slopes; v can be estimated
from distributions on targets and durations.

The form of the induction will therefore be to use an m-long continuous state
vector during dwells and a 2m-long vector (x, s) during transitions. The reader
should be alert to the fact that some of the terms in our notation fluctuate
between being m-long and 2m-long according to context.

At this point we are in a position to present formulae for entering a transition,
but they turn out to be a special case of the formulae for stepping through a
transition so that is the case we first consider.

2.6. Stepping through a transition

We assume that

αt−1(x, s) = kt−1 n((x, s)− µt−1, pt−1) (16)

where µt−1 is a 2m-long mean and pt−1 is a 2m×2m precision. So

αt(x, s) = P ′(h)αt−1(x, s) n(yt−1 − (x+ hs), e) (17)

where the first Gaussian (implicit in αt−1) lies in 2m dimensions and the second
(written explicitly) in m, making the operation of completing the square less
simple than we might hope. We find that

αt(x, s) = kt n((x, s)− µt, pt) (18)
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where

pt = pt−1 +

(
e he
he h2e

)
, (19)

µt = {(yt−1e, hyt−1e) + µt−1pt−1} p−1t , and (20)

kt = P ′(h)
kt−1|pt−1|1/2|e|1/2

(2π)m/2|pt|1/2
×

exp{− 1
2 [yt−1ey

T
t−1 + µt−1pt−1µ

T
t−1 − µtptµT

t ]}. (21)

(Recall that P ′(h) – the probability of staying in a transition – was defined in
§2.2.)

2.7. Entering a transition

At each step during a dwell we take a single hypothesis at time t−1 and gen-
erate two hypotheses at time t. One of these, which we have already described,
spends at least a further tick in the dwell; the other begins a transition to a new
target. That there is only one hypothesis entering a transition is a consequence
of our decision that our alphas would be functions of slope rather than of the
target of the destination phonetic unit.

There is an operation we need to perform at the end of every dwell, namely
multiplying kt by 1−P (h). If we are in a dwell at the end of an utterance then
we need to do this as part of the wrapup, and we need to do it when we move
from a dwell to a transition.

Having done it we find that the formula we want to use when we enter a
transition is a slight modification of the one we have already given as eq. (17)
with h equal to 0. When we presented this equation previously the mean and
precision of the alphas at t−1 were already 2m-dimensional whereas at present
they are m-dimensional. We need to extend them to the higher space by padding
the vector mean with zeroes corresponding to the prior mean of the slope, and
we need to replace the precision pt−1 by(

pt−1 0
0 v

)
(22)

(v being the prior precision of slopes). When we have done this we may apply
equations (18)-(21) directly.

2.8. Entering a dwell state

Entering a dwell is the most complicated part of the induction. We do it in a
slightly different way than when entering a transition. We will assume that we
have already computed the parameters kt, µt and pt for hypotheses which have
consumed the t observations up to and including yt−1. Each such hypothesis
which is in a transition state will be left as it stands, ready to be extended by
a further step in the same direction, and will also spawn a set of additional
hypotheses in which the observation at t−1 is the first in a dwell. There is one
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such hypothesis for every unit in the inventory, and hypotheses in this set will
be extended using the method of §2.3.

In order to put a hypothesis in the right form for extending as a dwell we
need to express its alphas in terms of the new realised target x′ rather than in
terms of the old target x and slope s.

Before doing this we have to remove the effect of the prior on slopes and
bring in a timing term for ending the transition. We want to write

kt (1−P ′(h))
n((x, s)− µt, pt)

n(0, v)
(23)

as a single scaled Gaussian κn((x, s)− γ, g). We find that

g = pt −
(

0 0
0 v

)
, (24)

γ = g−1ptµt, and (25)

κ = kt (1−P ′(h))
|pt|1/2

|g|1/2|v|1/2
exp

{
1
2

[
µtptµ

T
t − γgγT

]}
. (26)

We now need to express the alphas in terms of the new realised target x′

(by means of a change of variable) while marginalising out s by integration.
We shall write α′t(x

′) for the sum of probabilities of paths arriving at re-
alised target x′: the prime in α′t distinguishes it from the alpha value αt(x, s)
we have already computed for the same time. The change of variables and
marginalisation are obtained by writing

α′t(x
′) =

∫
dsαt(x

′ − hs, s) (27)

= κ

∫
dsn((x′ − hs, s)− γ, g) (28)

= κn(x′ − (γx + γsrsxr
−1
xx), rxx) (29)

which is in the required form, where

r = g − g
(
h2q−1 −q−1
−hq−1 q−1

)
g and (30)

q = h2gxx − h(gxs + gsx) + gss (31)

and where vector subscripts denote quadrants of matrices (so that rxx is the
first, ie. (x,x), quadrant of r). This calculation gives us the sum of path proba-
bilities over all paths leading to a putative new target x. The path probabilities
are products of observation probabilities over all observations seen so far to-
gether with realisation probabilities for all targets along the path (excluding
the target we are now reaching) and associated information from language and
timing models. To proceed further we need to bring in the missing terms re-
lating to the new target by assuming its phonetic identity and multiplying the
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Figure 3: Three formant hypotheses which agree phonetically but disagree in their timing. We
have a choice between choosing the best of them or combining them into a single hypothesis
with the sum of their probabilities.

alphas by n(x−θϕ, cϕ) and by a term from the language model. They are then
in the form we assumed earlier when we stepped through a dwell, allowing us
to continue the induction.

There is another question to consider when we enter a dwell. As we described
the algorithm at the outset, a hypothesis at any given time derives from a
unique antecedent at any earlier time. If we adopt this principle, then we
will ultimately recover the likeliest sequence of discrete states. This amounts
to recovering the likeliest phonetic sequence together with its assumed timings.
Figure 3 illustrates some hypotheses which are equivalent phonetically but differ
in timing.

For most purposes it is more useful to recover the likeliest sequence of pho-
netic units averaged over all consistent timings. In this case, when two hypothe-
ses with the same phonetic history enter a dwell state with the same assumed
phonetic unit, we should combine them into a single hypothesis. The composite
hypothesis will need the sum of the alpha distributions of its constituents; and
since the sum of scaled Gaussians is not itself a scaled Gaussian we will need
to perform an approximation. (We will hope that the means and variances of
the scaled Gaussians are similar with the consequence that we are effectively
adding the scale factors.)

2.9. Transient dwells

The formulae presented so far allow trajectories to be followed through the
entire utterance. Dwells of length zero need no special treatment. The method
of §2.8 allows us to convert the final step of a transition into the first step of a
dwell, and if on the next tick we apply the method of §2.7 we will have limited
the dwell to length 0.
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Figure 4: A formant commences a transition from ϕ0 to its successor ϕ1 but changes direction
towards ϕ2 before reaching it. We view ϕ1 as having a dwell of length −1.

2.10. Negative dwells

We use the term negative dwell to denote a phenomenon which arises in
rapid speech. The articulators embark on a transition from one phonetic unit
ϕ0 to its successor ϕ1, and before reaching their destination veer off in the
direction of the following unit ϕ2 as shown in Figure 4. Other names for the
same phenomenon are undershoot and overlapping transitions.

Negative dwells can be handled with little change to the method described
earlier. At the point in which the trajectory changes direction from heading to
ϕ1 to heading to ϕ2 we will have alphas written as αt(x, s). We will rewrite
them as α′t(x

′) by applying a similar method to that of §2.8. x′ will be the
realised target interpolated between ϕ1 and ϕ2. We will not subsequently be
able to bring in a term like n(x − θϕ, cϕ) reflecting the match of the realised
to the canonical target of ϕ1 because we never adopt the realised target as a
continuous state component. Instead this term has to be brought in during the
marginalisation. So the first step is to multiply by 1−P ′(h) and divide by n(0, v)
as in equations (23)-(26). We then perform a marginalisation in which equation
(27) is replaced by

α′t(x
′) =

∫
dsαt(x

′ − hs, s) n(x′ + h′s− θϕ, cϕ) (32)

where h′ is the number of ticks we are short of reaching the ϕ1 dwell (so we
would describe this case as having a dwell duration of −h′).

We also need to multiply the scale factor by the timing probability of the
dwell length −h′.

Once we have alphas expressed in terms of the realised continuous component
at this intermediate point, we can pad out the vectors to length 2m using the
prior mean 0 and precision v of the new slope and use the method of §2.6 to
step through the second transition.

We notice that if a wide range of negative dwell times is permitted, the
number of options to consider at each point in a transition becomes large. We
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also remark that if negative dwells are allowed by the model, then the P (−1) of
equations (7)-(10) needs to be redefined as the probability that a dwell-length
will be non-negative.

3. Experiments on synthetic sinusoidal speech

3.1. Summary of the experiments

Preliminary results from applying a CS-HMM to real speech from the TIMIT
corpus are reported in Weber et al. (2014); but here we describe results on toy
data which validate the algorithm under a widely accepted model of sonorant
sounds. We have made improvements in our results for real speech since our
earlier paper was published, but we are not at the point that the results cast
light on the soundness of our approach rather than on the completeness of our
implementation. This remains work in progress.

In our experiments sinusoidal speech is synthesised from a randomly gener-
ated phonetic inventory using a simplified HMS model. It comprises ‘formants’
following HMS trajectories, but these pseudoformants are sine waves during
dwells and swept sine waves during transitions. Three formants are used for the
experiment.

The realised targets are generated from a Gaussian distribution centred on
the canonical targets with standard deviation σf Hz. Dwell and transition dura-
tions are taken from uniform distributions: transitions range from 2 to 6 frames
(inclusively) whereas dwells range from 0 to 4 frames in one experiment and
from 1 to 4 in the others.

Canonically all formants have the same amplitude, but realised amplitudes
are taken from a lognormal distribution with parametric variance: we will see
what effect this has on the recovery process. In the first two experiments the
standard deviation of log amplitudes is 0.3; in the third it is 0. Transitions move
linearly between the frequencies and amplitudes of their end points.

The inventory comprises 40 units whose canonical targets are chosen from
a uniform distribution over 200-3800Hz subject to the constraint that no pair
of adjacent formants has canonical targets closer than 150Hz (and that the
frequencies are in ascending order). The language model is uniform except that
a phonetic unit can never be followed by itself (so the legal transitions each have
probability 1/39).

3.2. Algorithms considered

We evaluate the CS-HMM of this paper against the standard DS-HMM,
running each algorithm with two different feature sets. The model used by the
CS-HMM analyses the data into dwells and transitions as described previously.
The DS-HMM uses a conventional model in which each phonetic unit is divided
into 3 substates, the first being the second half of the transition from the pre-
decessor, the second being the dwell, and the third being the first half of the
transition to the successor. Transition substates are modelled separately for ev-
ery pair of surrounding phonetic units, but dwells are modelled independently
of context. This reflects the intended interpretation of the substates.
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The first feature set (denoted ‘(f)’) comprises simulated noisy formant fre-
quency measurements, obtained from the true pseudoformant frequencies sub-
ject to Gaussian measurement error which has a parametric standard deviation.
For the DS-HMM we append ∆-frequencies (which we didn’t find to be very
useful).

The second feature set, denoted ‘(a)’, is derived directly from the acoustics,
which is done differently for the two algorithms with the noise in each case being
additive Gaussian acoustic white noise with parametric SNR.

For CS-HMM (a) we converted the acoustic input into formant frequency
estimates using a crude formant tracker, made up of a Fourier tone detector
which analyses spectral peaks as tones for each frame independently and is
followed by a dynamic program which imposes continuity on the frequencies of
the peaks selected. We make no attempt to model transitions as swept tones
rather than as tones, or to resolve broad peaks into multiple tones, or to exploit
amplitude continuity in the dynamic program, or to take advantage of phase-
coherence between frames (which would be cheating, given that no such property
could be exploited in speech).

For DS-HMM (a) we extracted 13-long cepstral vectors and experimented
with adding ∆-cepstra and ∆2-cepstra. We found that ∆-cepstra were always
beneficial, and that ∆2s were beneficial for the higher SNRs (20dB and 60dB)
but harmful when the SNRs were lower (ie. for noisier signals). We quote results
for whichever of the two worked better.

All the algorithms were trained on a further 4 hours of data synthesised
using the parameters of the test set. We made the training easier by using the
known phonetic labels rather than by using Baum-Welch or Viterbi alignment.

The number of parameters differs between algorithms. Both the CS-HMMs
have 40 vector means, 40 realisation variance matrices, and a single observation
variance matrix; all of which apply to 3-long features. In our experiments
the realisation variances were pooled and diagonal but we don’t expect these
properties to hold for real signals. The observation variance is pooled between
phonetic units and is a scalar multiple of the identity.

The DS-HMMs each have 40 mean and variance matrices for the central sub-
state of each phonetic unit, together with a further 2×40×39 for the substates
assigned to transitions. The variance matrices are assumed diagonal. The pa-
rameter space differs between DS-HMM (f) and DS-HMM (a) only in the length
of their feature vectors: 6 in the first case, 26 or 39 in the second.

3.3. Experimental rationale

The experiment was designed with the aim of validating the effectiveness of
the decoding algorithms (and hence their associated models) without confusing
the results with uncertainty over whether the algorithms had been adequately
trained. This was achieved by using a generous training corpus with oracular
labels (there was no need for any form of EM training).

We gave the DS-HMM no more parameters than could be seen to serve a
purpose. There is no real justification for using GMMs in preference to pure
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Gaussians given the nature of the generative process. This would have expanded
the parameter space and would have necessitated EM training which might have
cast doubt on the results. The phonetic context is one-sided and limited to
a single unit since no additional context has any influence on the generation
process.

We have experimented informally with Viterbi training of the CS-HMM on
the same data and found that it worked perfectly well.

3.4. First experiment: variable amplitudes, dwell times from 0 to 4

We now present results of the first experiment (Table 1). Each cell contains
the error rate (computed using SCLite (Fiscus et al., 2006)) for a particular
configuration. The error rate is averaged over 20 experiments, each with a ran-
domly generated phonetic inventory giving rise to an audio stream comprising
1000 phonetic units.

The four blocks across the table contain the results for the two algorithms
and their differing feature sets. There are 3 columns in each block corresponding
to different variabilities of realised pseudoformant target frequencies about their
canonical mean, quoted as standard deviations σf .

The top row corresponds to the almost complete absence of noise. It is
legitimate to compare the accuracy of all four blocks here. In subsequent rows
the level of noise increases but on different scales depending on the feature set,
and is either the standard deviation σn of the synthetic observations about the
true value or the SNR for acoustic data. For this reason it is not legitimate to
compare results across the double vertical bar.

In each block the easiest problems lie at top left and the hardest at bottom
right.

Comparing the first two blocks we see that the CS-HMM is more effective
than the DS-HMM in capturing the dynamic properties of its input in spite of
having a much smaller parameter space.

In the right-hand half of the table we see that DS-HMM (a) is somewhat
weaker than DS-HMM (f) in the top row but stronger than CS-HMM (a)
throughout. The poor performance of CS-HMM (a) is nothing to do with any
weakness in the decoding algorithm: the difficulty is in tracking the pseudofor-
mants. When a quiet F2 makes a rapid transition from close to F1 to close to
F3 and back, the swept tone is almost invisible to the tone detector and the
dynamic program prefers a hypothesis in which F2 stays close to F1. We expect
that these effects could be obviated if we were willing to write a sufficiently
sophisticated pseudoformant tracker, but that is too large a task to be justified
for artificial data.

It is worth noting that CS-HMM (a) comes closest to DS-HMM (a) when
σf is large. We assume that this is because the CS-HMM then gains a larger
advantage through modelling the two forms of variability separately.

3.5. Second experiment, excluding zero dwells

This second experiment allows dwells to range from 1 to 4 frames, with
results as shown in Table 2.
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CS-HMM (f) DS-HMM (f) CS-HMM (a) DS-HMM (a)
σf 10 30 60 10 30 60 10 30 60 10 30 60

σn = 1 0.06 0.72 3.59 3.74 5.54 10.34 22.78 23.06 26.42 6.84 9.97 19.48 60 = SNR
10 0.06 0.68 3.68 3.62 5.53 10.71 22.26 22.92 26.46 8.42 11.92 23.03 20
30 0.24 0.88 3.86 4.69 6.31 11.47 21.26 21.86 26.32 9.82 13.62 25.13 10
60 1.00 1.92 5.14 7.33 8.85 13.58 31.00 31.98 34.74 19.81 23.33 33.22 0

Table 1: Phonetic error rates (as percentages) when dwells are in the range [0, 4] and formant amplitudes are variable (their logs have standard
deviation 0.3). The leftmost column gives σn, the measurement noise for formant features, whereas the rightmost gives the SNR in dB determining
the additive noise for acoustic features. The three columns per algorithm correspond to different values of σf , the standard deviation of realised
frequencies about their canonical means.

CS-HMM (f) DS-HMM (f) CS-HMM (a) DS-HMM (a)
σf 10 30 60 10 30 60 10 30 60 10 30 60

σn = 1 0.03 1.00 3.69 0.14 1.26 5.56 16.57 18.22 21.86 4.55 7.18 15.46 60 = SNR
10 0.04 0.46 3.62 0.20 1.24 5.58 16.70 18.14 21.50 5.22 8.68 17.55 20
30 0.17 0.87 3.62 0.71 1.88 6.12 16.46 17.73 21.42 6.78 9.66 19.03 10
60 0.74 1.53 4.62 2.80 3.74 7.86 23.94 25.94 29.06 15.09 18.04 28.01 0

Table 2: Error rates as in Table 1 but with zero-length dwells excluded. Here, dwell times are in the range [1, 4].

CS-HMM (f) DS-HMM (f) CS-HMM (a) DS-HMM (a)
σf 10 30 60 10 30 60 10 30 60 10 30 60

σn = 1 0.03 1.00 3.69 0.14 1.26 5.56 1.73 3.10 6.78 4.97 7.89 16.30 60 = SNR
10 0.04 0.46 3.62 0.20 1.24 5.58 1.82 3.02 6.69 4.86 7.82 17.05 20
30 0.17 0.87 3.62 0.71 1.88 6.12 1.68 2.84 6.70 5.99 8.66 18.66 10
60 0.74 1.53 4.62 2.80 3.74 7.86 4.06 5.04 9.38 10.48 13.44 23.12 0

Table 3: Error rates as in Table 1. Dwell times are in the range [1, 4] and formant amplitudes are fixed. Each of these changes makes the problem a
little easier.
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We see that DS-HMM (f) gets closer to CS-HMM (f) than in the previous
experiment, which is what we would expect given that its weakness is in handling
dynamics and that we have increased the proportion of information available
from the static components. The gap is still appreciable.

3.6. Third experiment with constant pseudoformant amplitudes

Finally we remove the variability of pseudoformant amplitudes. Results are
displayed in table 3.

This experiment makes the task of the peak picker a good deal easier by
removing the risk that pseudoformants will be too quiet to be detected when
moving quickly. As a result CS-HMM (a) outperforms DS-HMM (a) by a signif-
icant margin. (The results with formant features are the same as in the previous
table because they are independent of amplitude.)

4. Extensions of the model

4.1. Vocal tract length

So far we have described a speaker-independent algorithm for recovering a
phonetic sequence given acoustic measurements. We now look at extensions of
the model which take explicit account of the acoustic and phonetic phenomema
of vocal track length (VTL), of the loudness of acoustic elements, and of channel
effects. In order to consider these topics we need to make concrete assumptions
about the nature of the feature vectors.

The first extension to consider introduces a degree of speaker adaptation by
treating vocal tract length as an additional component of the hidden continuous
state. The main effect of vocal tract length is to apply a scalar multiplier to
formant frequencies or to articulator positions. But in order to incorporate VTL
into our model we need the feature vector to have the logs of these quantities as
components rather than linear values. So assume, for the following discussion,
that the feature vector comprises precisely the logs of m measured formant
frequencies.

This assumption has certain effects on our model. It implies an expectation
that formant trajectories will not be linear after all, but will follow the expo-
nential curves implied by linearity of the logs. We do not feel that this makes
the model any less plausible since there are no convincing reasons to prefer one
trajectory shape to the other.

We may specify the canonical phonetic targets for a ‘standard’ speaker. We
add an extra scalar λ to the continuous state, which is the log ratio of the
speaker’s vocal tract length to the standard: λ comes from a 0-mean Gaussian
distribution. We then view the realised targets as varying about a mean of the
form θϕ+λ1m where θϕ is (componentwise) the logarithm of the mean canonical
formant frequencies for a standard speaker and 1m is an m-long vector of 1s.

We apply the CS-HMM in exactly the same way as before. v is assumed to
be constant throughout the data. At the end we have a preferred recovery of
the phonetic sequence and an alpha value which takes the form of a Gaussian
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distribution on an (m+1)-dimensional vector comprising m log formant targets
and λ. Projecting onto a single dimension gives us the posterior distribution of
the speaker’s vocal tract length, which may be useful for some purposes.

The precision matrices used by the CS-HMM now specify variability in the
logs of formant frequencies rather than in their linear values. There is no reason
to suppose that this will give an appreciably worse fit to the variability of realised
about canonical targets than we would obtain using linear formant frequencies.

The biggest drawback to working in the log space comes when we look at
the precision matrix e reflecting variability of formant measurements about their
true values. In linear formant space we expect this to be a scalar multiple of the
identity matrix, although nothing in the analysis requires it to take this form.
In a log space it is impossible to provide an entirely satisfactory substitute. The
reason is that we expect errors to be of roughly equal magnitude throughout
the frequency range, which implies that we expect errors in log frequencies to
be greater when the true frequencies are low than when they are high. We can
allow for this to a certain extent by stipulating greater variance for log F1 than
for log F3. However F1 itself varies by a factor of more than 5 between its
extrema, so this compensation is insufficient.

For any given formant frequency, we expect observations to come from a
Gaussian distribution centred on the true frequency. There is no difficulty in
finding a log-normal distribution which closely matches the given Gaussian: the
trouble is that identifying the right log-normal distribution depends on knowing
the true frequency. But although the true frequency is unknown, it is likely that
the measured frequency will be close to it, so at any point we can find a log-
normal distribution which is likely to be approximately correct. (Unsmoothed
formant measurements are permissible as inputs to the CS-HMM, but we should
smooth them for the purpose of fitting a log-normal to a Gaussian distribution.)

This is certainly not as rigorous or as exact as the methods of earlier in
this paper, but nor is there anything illegitimate about what we have done.
Observations and system parameters are both assumed known at the outset, and
we proceed to recover and marginalise the various unknowns. There’s nothing
to prevent us from looking at one set of knowns – the observations – before
settling on the other – the system parameters.

An alternative method of handling VTL, which is almost the only way avail-
able to conventional models, is to perform a speaker-independent trial decode,
to estimate speaker characteristics from it, and to decode afresh using an im-
proved model. This is clumsy compared with “tuning in” in the way we have
described.

4.2. Loudness and channel effects

If the acoustic features are made up of formant frequencies then loudness has
no effect on recognition. (By loudness, without being precise, we mean some
linear transformation of log amplitude.) However it is unlikely that formant
frequencies alone contain all the information needed.
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If the acoustic features are spectral band energies, then loudness and channel
effects can be brought in in much the same way as VTL can be for formant
frequencies.

A third option which merits consideration is for the acoustic features to
contain components analogous to formant loudnesses in addition to features
derived from formant frequencies. However we do not want recognition results
to be influenced by the overall loudness of the signal, which is not phonetically
relevant. So the first step is to introduce the overall loudness level as another
persistent scalar state variable in the same way as log VTL previously, and to
initialise it with a prior with low precision. The relative loudness of certain
components (for instance the quietness of F3 for nasal consonants) can now be
exploited during recognition.

If we wish to allow for unknown linear channel effects we need to do more
than this. These effects lead to a frequency-dependent amplification of the
signal. We could represent it in the model by postulating a number of persistent
state variables corresponding (say) to the channel effects at 0Hz, 1000Hz, 2000Hz
and 3000Hz, understanding effects at intermediate frequencies to be given by
linear interpolation. The prior assumption will be that neighbouring channel
effects take similar values. If we then take the estimated formant frequency at
any point as a proxy for the true frequency, we can infer an expected loudness as
a linear function of state variables, and compare it with the measured loudness
under a Gaussian density function.

It is interesting to note that this procedure is neater than the techniques
available in the cepstral domain, even though channel effects are simple linear
additives there. But they can be expressed adequately in frequency space, and
the CS-HMM then allows them to be modelled as unseen state components in
a way which a DS-HMM cannot achieve.

5. Conclusions

In this paper we have outlined a model for sonorant speech based on that of
Holmes, Mattingly and Shearme and we have developed an optimal algorithm
for extracting information from the dynamics implied by it. We have validated
the algorithm in experiments on toy data and we have shown how it can be
extended to capture other important effects. Along the way we have shown
that the dynamical structure of speech is imperfectly preserved by direct use of
cepstral measurements.

Questions for further consideration are:

• How accurately can sonorant speech be modelled by piecewise linear for-
mant frequencies and loudnesses?

• What should we do about non-sonorant sounds (such as unvoiced conso-
nants)?

• How can we measure the acoustic features we need?
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• Or if we cannot measure them reliably, can we modify the algorithm to
incorporate them as a hidden layer?
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